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1. Introduction
Numerical simulations of supernovae have a long history, dating back to the original ground-breaking models1 that identified the release of gravitational energy in a collapsing stellar core as the driving energy source in supernovae .  The current state of supernova simulations is very active, with many independent efforts developing multidimensional, multi-physics codes.  These efforts are too numerous to list hear, but can be found in recent reviews2.  These models are necessarily complex, as the core-collapse supernova mechanism may be the consequence of several processes, including neutrino heating, thermally driven convection, shock dynamics, and nuclear burning.  In order to understand the relevant physical processes responsible for reviving the stalled supernova shock wave, many authors have employed steady-state models of the post-bounce phase3-5.  We follow their approach in our study of the dynamics of the accretion shock, with particular attention paid to the role of the spherical accretion shock instability (SASI) in generating pulsar spin.  

The SASI was first discovered6 in two-dimensional axisymmetric simulations that were constructed to understand the origins of the turbulent fluid dynamics in the neutrino heating, or ``gain,'' region between the PNS surface, or ``neutrinosphere,'' and the accretion shock. As the name suggests, the SASI is an instability of the stalled quasi-stationary core collapse supernova accretion shock during the critical neutrino-heating epoch after stellar core bounce.  The original SASI discovery was made with a steady-state adiabatic hydrodynamics model, the results have now been confirmed in two-dimensional models developed by others7-9 that include neutrino transport. 

In this Supplementary Information, we describe the hydrodynamic model used to study the  dynamics of the stalled shock of a core-collapse supernova, along with the numerical method used to evolve this model in three dimensions.

2. Post-Bounce Supernova Model
The post-bounce phase of a core-collapse supernova is well-described4 by a stationary accretion shock at a radius of ~100 km.  Above this shock the outer core is collapsing, falling onto the shock at near the local free-fall velocity.  The pressure behind the shock is dominated by relativistic electrons and photons, resulting in an effective adiabatic index of =4/3.  The post shock gas gradually decelerates and settles onto the surface of the PNS.  

The post-bounce phase is approximately steady state because the energy loss via neutrino emission is able to offset the energy gain through accretion at the shock.  Without some form of energy sink the post-shock region would quickly build up an excess energy and drive the shock outwards.  One can approximate this steady state using an optically-thin cooling function as in the post-supernova fall-back models10, or with a fixed flux through the inner boundary that matches the steady flux at the shock9.  The original hydro models of the SASI employed both of these approaches and found similar behaviour of the shock6.  This result is consistent with the interpretation of the SASI as an instability of the shock, with little influence from the flow near the surface of the PNS.

Due to the limited resolution of a 3D Cartesian grid, we chose to use the adiabatic model with a fixed flux at the inner boundary rather than the cooling model which requires a relatively high spatial resolution to resolve the steep radial gradients in the thin cooling region. We assumed an absorbing inner boundary at the surface of the PNS that allows mass to accrete onto the PNS at a fixed, highly subsonic velocity.  With a constant flow velocity onto the accretion shock and a fixed flow velocity at the surface of the PNS, this model is time-independent. Moreover, one-dimensional simulations show that this model is dynamically stable to radial perturbations6.
3. Numerical Method

We use the piecewise parabolic method (PPM)11 to solve the Euler equations describing the evolution of an ideal gas. The continuity equation, the momentum equation, and the energy equation can be written in a conservation form as
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where , P, and u are the gas density, pressure and velocity, respectively.  The gravitational acceleration is that of a point source of mass M in order to maintain the time-independence of the initial model.  The total specific energy includes the gravitational potential energy, 
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and the internal energy, 
[image: image5.wmf], is related to the gas pressure with the adiabatic index =4/3 by 
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The code is parallelized using the Message Passing Interface (MPI) and a slab domain decomposition.  The base version of this code is available at http://astro.physics.ncsu.edu/pub/VH-1.

A uniform Cartesian grid was used with the PNS located in the geometric center of the grid.  This choice of grid geometry alleviates any problems with coordinate singularities common to spherical grids and has less chance for grid imprinting to influence the dynamics. In order to minimize grid imprinting on the spherical accretion shock, additional dissipation in the form of a viscous flux was added to the remap step12.  The use of a Cartesian grid does, however, result in limited spatial resolution near the surface of the accreting PNS (of radius Rs).  A spatial resolution of x =0.035 Rs was used for all simulations, which provided sufficient accuracy to maintain a steady shock (in the absence of initial perturbations) for a few dynamical times.  The simulation domain was typically 14 Rs (400 zones) on a side during the early linear evolution of the SASI when the shock remains steady and spherical.  Once the SASI became nonlinear and the shock began to grow, additional zones were added to the grid, up to a maximum of 42 Rs corresponding to a grid of 12003 zones.

The PPM method implemented on a Cartesian grid is designed to conserve linear momentum to machine accuracy, but not angular momentum.  Since rotation is critical to the science objectives of this work, we paid careful attention to the errors in advecting angular momentum.  Without any modifications to the PPM algorithm, the specific angular momentum was conserved to within one part in 105 per time step, with the total error remaining less than 5% throughout the simulation.

4. Boundary Conditions

The absorbing boundary condition at the surface of the PNS was implemented by resetting all grid zones within a radius Rs of the grid center prior to every time step.  The velocity was reset to the fixed value determined by eqn. (1).  The density and pressure were reset to the equilibrium radial power-laws, r-3 and r-4 respectively.  This was done by using the values of zones exterior to this surface and performing a linear interpolation onto a radial ray passing through the center of the interior zone being reset. We tracked the amount of conserved quantities (mass, linear and angular momentum, total energy) removed from the grid in the process of resetting interior values, both as a check on the conservation properties of the code and as a measure of the accretion rate onto the PNS.

5. Initial Conditions
We implement the post-bounce SN model described above by assuming an ideal, adiabatic gas with =4/3, a fixed point source of gravity, and free-fall velocity above a stationary, spherical, high Mach-number shock.  Under these conditions and scaling to preshock values, the radial velocity profile is given by6:
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This initial profile is mapped onto the numerical grid, including the fixed value for the flow velocity at the inner boundary.  This solution is first evolved on a 1D spherical grid in order for the solution to relax to an equilibrium.  The evolved solution was then mapped onto the 3D Cartesian grid.  Various initial perturbations were used to break the spherical symmetry, including density inhomogeneities in the pre-shock gas and random acoustic noise in the shock interior.

6. Progenitor Rotation

In order to include progenitor rotation within the context of a time-independent model of a spherical accretion shock, one must assume the flow has a constant specific angular momentum. We used a nominal value of specific angular momentum, j=1015 cm2/s, in our models, corresponding to the value of j at the mass coordinate of the stalled accretion shock (~1.3 M() in the canonical 15 M( model from ref. (13). Following previous authors14, we used an angular dependence of the specific angular momentum of sin(such that the -component of the velocity goes to zero on the rotation axis.
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