In Search of the Perfect Fluid

Thomas Schaefer, North Carolina State University
Fluids: Gases, liquids, plasmas, …

Hydrodynamics: Long-wavelength, low-frequency dynamics of conserved or spontaneously broken symmetry variables.

Historically: Water

$$(\rho, \epsilon, \vec{\pi})$$
Simple non-relativistic fluid

Simple fluid: Conservation laws for mass, energy, momentum

\[
\frac{\partial \rho}{\partial t} + \vec{\nabla} (\rho \vec{v}) = 0
\]

\[
\frac{\partial \epsilon}{\partial t} + \vec{\nabla} j^\epsilon = 0
\]

\[
\frac{\partial}{\partial t} (\rho v_i) + \frac{\partial}{\partial x_j} \Pi_{ij} = 0
\]

Constitutive relations: Energy momentum tensor

\[
\Pi_{ij} = P \delta_{ij} + \rho v_i v_j + \eta \left(\partial_i v_j + \partial_j v_i - \frac{2}{3} \delta_{ij} \partial_k v_k \right) + O(\partial^2)
\]

reactive dissipative 2nd order

Expansion \(\Pi_{ij}^0 \gg \delta \Pi_{ij}^1 \gg \delta \Pi_{ij}^2 \)
Regime of applicability

Expansion parameter $Re^{-1} = \frac{\eta(\partial v)}{\rho v^2} = \frac{\eta}{\rho L v} \ll 1$

$$Re = \frac{\hbar n}{\eta} \times \frac{mvL}{\hbar}$$

fluid property flow property

Kinetic theory estimate: $\eta \sim npl_{mfp}$

$$Re^{-1} = \frac{v}{c_s} Kn \quad Kn = \frac{l_{mfp}}{L}$$

expansion parameter $Kn \ll 1$
Shear viscosity

Viscosity determines shear stress ("friction") in fluid flow

\[F = A \eta \frac{\partial v_x}{\partial y} \]

Kinetic theory: conserved quantities carried by quasi-particles

\[\frac{\partial f_p}{\partial t} + \vec{v} \cdot \nabla_x f_p + \vec{F} \cdot \nabla_p f_p = C[f_p] \]

\[\eta \sim \frac{1}{3} n \bar{p} l_{mf_p} \]

Dilute, weakly interacting gas: \(l_{mf_p} \sim 1/(n\sigma) \)

\[\eta \sim \frac{1}{3} \frac{\bar{p}}{\sigma} \] independent of density!
Shear viscosity

non-interacting gas ($\sigma \to 0$):

$$\eta \to \infty$$

non-interacting and hydro limit ($T \to \infty$) limit do not commute

strongly interacting gas:

$$\frac{\eta}{n} \sim \overline{p} l_{mfp} \geq \hbar$$

but: kinetic theory not reliable!

what happens if the gas condenses into a liquid?

Eyring, Frenkel:

$$\eta \simeq hn \exp(E/T) \geq hn$$
And now for something completely different . . .

String Theory Summarized:

I just had an awesome idea. Suppose all matter and energy is made of tiny, vibrating "strings."

Okay, what would that imply?

I dunno.
Gauge theory at strong coupling: Holographic duality

The AdS/CFT duality relates

large N_c (conformal) gauge theory in 4 dimensions ⇔ string theory on 5 dimensional Anti-de Sitter space $\times S_5$
correlation fcts of gauge invariant operators ⇔ boundary correlation fcts of AdS fields

$$\langle \exp \int dx \, \phi_0 \mathcal{O} \rangle = Z_{string}[\phi(\partial AdS) = \phi_0]$$

The correspondence is simplest at strong coupling $g^2 N_c$

strongly coupled gauge theory ⇔ classical string theory
Holographic duals: Transport properties

Thermal (conformal) field theory $\equiv \text{AdS}_5$ black hole

CFT temperature \Leftrightarrow Hawking temperature

CFT entropy \Leftrightarrow Hawking-Bekenstein entropy

\sim area of event horizon

Shear viscosity \Leftrightarrow Graviton absorption cross section

\sim area of event horizon

\begin{align*}
T_{\mu\nu} &= \frac{1}{\sqrt{-g}} \frac{\delta S}{\delta g_{\mu\nu}} \\
g_{\mu\nu} &= g_{\mu\nu}^0 + \gamma_{\mu\nu}
\end{align*}
Holographic duals: Transport properties

Thermal (conformal) field theory $\equiv AdS_5$ black hole

- CFT entropy \Leftrightarrow Hawking-Bekenstein entropy
 \sim area of event horizon

- shear viscosity \Leftrightarrow Graviton absorption cross section
 \sim area of event horizon

Strong coupling limit

$$\frac{\eta}{s} = \frac{\hbar}{4\pi k_B}$$

Son and Starinets (2001)

Strong coupling limit universal? Provides lower bound for all theories?
Kinetics vs no-kinetics

AdS/CFT low viscosity goo

pQCD kinetic plasma
Effective theories for fluids (Here: Weak coupling QCD)

\[\mathcal{L} = \bar{q}_f (iD - m_f) q_f - \frac{1}{4} G^a_{\mu\nu} G^{a\mu\nu} \]

\[\frac{\partial f_p}{\partial t} + \vec{v} \cdot \nabla_x f_p = C[f_p] \quad (\omega < T) \]

\[\frac{\partial}{\partial t} (\rho v_i) + \frac{\partial}{\partial x_j} \Pi_{ij} = 0 \quad (\omega < g^4 T) \]
Effective theories (Strong coupling)

\[\mathcal{L} = \bar{\lambda}(i\sigma \cdot D)\lambda - \frac{1}{4} G^a_{\mu\nu}G^a_{\mu\nu} + \ldots \Leftrightarrow S = \frac{1}{2\kappa_5^2} \int d^5x \sqrt{-g} \mathcal{R} + \ldots \]

\[\frac{\partial}{\partial t}(\rho v_i) + \frac{\partial}{\partial x_j} \Pi_{ij} = 0 \quad (\omega < T) \]
Kinetics vs no-kinetics

Spectral function \(\rho(\omega) = \text{Im} G_R(\omega, 0) \) associated with \(T_{xy} \)

weak coupling QCD \hspace{2cm} \text{strong coupling AdS/CFT}

transport peak vs no transport peak
Perfect Fluids: How to be a contender?

Bound is quantum mechanical

need quantum fluids

Bound is incompatible with weak coupling and kinetic theory

strong interactions, no quasi-particles

Model system has conformal invariance (essential?)

(Almost) scale invariant systems
Perfect Fluids: The contenders

QGP \((T=180 \text{ MeV}) \)

Trapped Atoms \((T=0.1 \text{ neV}) \)

Liquid Helium \((T=0.1 \text{ meV}) \)
Perfect Fluids: The contenders

QGP $\eta = 5 \cdot 10^{11} \text{Pa} \cdot \text{s}$

Trapped Atoms $\eta = 1.7 \cdot 10^{-15} \text{Pa} \cdot \text{s}$

Liquid Helium $\eta = 1.7 \cdot 10^{-6} \text{Pa} \cdot \text{s}$

Consider ratios η/s
QCD and the Quark Gluon Plasma

$$\mathcal{L} = \bar{q}_f(i\slashed{D} - m_f)q_f - \frac{1}{4g^2}G^a_{\mu\nu}G^a_{\mu\nu}$$
Quantum chromodynamics (QCD)

Elementary fields:

Quarks
- Color: \(a = 1, \ldots, 3 \)
- Spin: \(\alpha = 1, 2 \)
- Flavor: \(f = u, d, s, c, b, t \)

Gluons
- Color: \(a = 1, \ldots, 8 \)
- Spin: \(\epsilon^\pm_\mu \)

Dynamics: Generalized Maxwell (Yang-Mills) + Dirac theory

\[
\mathcal{L} = \bar{q}_f (i \slashed{D} - m_f) q_f - \frac{1}{4} G^a_{\mu \nu} G^{a \mu \nu}
\]

\[
G^a_{\mu \nu} = \partial_\mu A^a_\nu - \partial_\nu A^a_\mu + g f^{abc} A^b_\mu A^c_\nu
\]

\[
i \slashed{D} q = \gamma^\mu \left(i \partial_\mu + g A^a_\mu t^a \right) q
\]
Asymptotic freedom

Modification of Coulomb interaction due to quantum fluctuations

$q\bar{q}$-pairs electric gluons magnetic gluons

\[A_{\mu}^{cl} \quad \delta \psi \quad A_{\nu}^{cl} \quad \delta A_{\mu} \quad k^\nu F_{\mu\nu} \]

\begin{align*}
\text{dielectric } & \epsilon > 1 \quad \text{dielectric } \epsilon > 1 \quad \text{paramagnetic } \mu > 1 \\
\mu \epsilon &= 1 \ \Rightarrow \ \epsilon < 1
\end{align*}

\[
\beta(g) = -\frac{\partial g}{\partial \log(r)} = \frac{g^3}{(4\pi)^2} \left\{ \left[\frac{1}{3} - 4 \right] N_c + \frac{2}{3} N_f \right\} < 0
\]
“Seeing” quarks and gluons
Running coupling constant

\[\beta(g) \alpha_s - \left(\frac{11g}{3} \right) \alpha_s^2 \]

\[\alpha_s(Q) \]

\[\alpha_s(M_z) = 0.118 \pm 0.003 \]

\[Q/\text{[GeV]} \]
The high T phase: Qualitative argument

High T phase: Weakly interacting gas of quarks and gluons?

typical momenta \(p \sim 3T \)

Large angle scattering involves large momentum transfer

effective coupling is small

Small angle scattering is screened (not anti-screened!)

coupling does not become large

Quark Gluon Plasma
Dilute Fermi gas: BCS-BEC crossover

\[\mathcal{L}_{\text{eff}} = \psi^\dagger \left(i \partial_0 + \frac{\nabla^2}{2M} \right) \psi - \frac{C_0}{2} (\psi^\dagger \psi)^2 \]
Consider simple square well potential

\[
a < 0 \quad a = \infty, \epsilon_B = 0 \quad a > 0, \epsilon_B > 0
\]
Unitarity limit

Now take the range to zero, keeping $\epsilon_B \simeq 0$

Universal relations

$$\mathcal{T} = \frac{1}{ik + 1/a}$$

$$\epsilon_B = \frac{1}{2ma^2}$$

$$\psi_B \sim \frac{1}{\sqrt{ar}} \exp(-r/a)$$
Feshbach resonances

Atomic gas with two spin states: “↑” and “↓”

Feshbach resonance

\[a(B) = a_0 \left(1 + \frac{\Delta}{B - B_0} \right) \]

“Unitarity” limit \(a \to \infty \)

\[\sigma = \frac{4\pi}{k^2} \]
Almost ideal fluid dynamics (cold gases)

Hydrodynamic expansion converts coordinate space anisotropy to momentum space anisotropy

O’Hara et al. (2002)
Collective oscillations

Radial breathing mode

Ideal fluid hydrodynamics \((P = \frac{2}{3} \mathcal{E})\)

\[
\frac{\partial n}{\partial t} + \nabla \cdot (n\vec{v}) = 0
\]

\[
\frac{\partial \vec{v}}{\partial t} + (\vec{v} \cdot \nabla) \vec{v} = -\nabla P \frac{1}{mn} - \nabla V \frac{1}{m}
\]

Hydro frequency at unitarity

\[
\omega = \sqrt{\frac{10}{3}} \omega_{\perp}
\]

Damping small, depends on \(T/T_F\).

experiment: Kinast et al. (2005)
Viscous hydrodynamics

Energy dissipation (η, ζ, κ: shear, bulk viscosity, heat conductivity)

\[
\dot{E} = -\frac{1}{2} \int d^3 x \eta(x) \left(\partial_i v_j + \partial_j v_i - \frac{2}{3} \delta_{ij} \partial_k v_k \right)^2 \\
- \int d^3 x \zeta(x) (\partial_i v_i)^2 - \frac{1}{T} \int d^3 x \kappa(x) (\partial_i T)^2
\]

Shear viscosity to entropy ratio
(assuming $\zeta = \kappa = 0$)

\[
\frac{\eta}{s} = (3\lambda N)^{\frac{1}{3}} \frac{\Gamma}{\omega_\perp} \frac{E_0}{E_F} \frac{N}{S}
\]

Schaefer (2007), see also Bruun, Smith

$T \ll T_F$ \hspace{1cm} $T \gg T_F, \tau_R \simeq \eta/P$
Dissipation

Dissipation

\[
\frac{(\delta t_0)}{t_0} = \begin{cases}
0.008 \\
0.024
\end{cases}
\left(\frac{\langle \eta/s \rangle}{1/(4\pi)} \right) \left(\frac{2 \cdot 10^5}{N} \right)^{1/3} \left(\frac{S/N}{2.3} \right) \left(\frac{0.85}{E_0/E_F} \right)
\]

- \(t_0\): "Crossing time" (\(b_\perp = b_z\), \(\theta = 45^\circ\))
- \(a\): amplitude
Elliptic flow (QGP)

Hydrodynamic expansion converts coordinate space anisotropy to momentum space anisotropy.

\[
p_0 \left. \frac{dN}{d^3 p} \right|_{p_z=0} = v_0(p_{\perp}) (1 + 2v_2(p_{\perp}) \cos(2\phi) + \ldots)
\]

Elliptic flow: initial entropy scaling

Viscosity and elliptic flow

Consistency condition $T_{\mu\nu} \gg \delta T_{\mu\nu}$ (applicability of Navier-Stokes)

$$\frac{\eta + \frac{4}{3} \zeta}{s} \ll \frac{3}{4} (\tau T)$$

Danielewicz, Gyulassy (1985)

Very restrictive for $\tau < 1$ fm

Many questions: Dependence on initial conditions, freeze out, etc.

conservative bound $\frac{\eta}{s} < 0.4$
The bottom-line

Remarkably, the best fluids that have been observed are the coldest and the hottest fluid ever created in the laboratory, cold atomic gases \((10^{-6}\text{K})\) and the quark gluon plasma \((10^{12}\text{K})\) at RHIC.

Both of these fluids come close to a bound on the shear viscosity that was first proposed based on calculations in string theory, involving non-equilibrium evolution of back holes in 5 (and more) dimensions.
Extra Slides
Kinetic theory: Quasiparticles

<table>
<thead>
<tr>
<th></th>
<th>low temperature</th>
<th>high temperature</th>
</tr>
</thead>
<tbody>
<tr>
<td>unitary gas</td>
<td>phonons</td>
<td>atoms</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>helium</td>
<td>phonons, rotons</td>
<td>atoms</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>QCD</td>
<td>pions</td>
<td>quarks, gluons</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Theory Summary

- Unitary gas
- ^4He
- QCD
Spectral function (lattice QCD)

\[\rho(\omega) K(x_0=1/2T,\omega)/T^4 \]

<table>
<thead>
<tr>
<th>(T)</th>
<th>1.02 (T_c)</th>
<th>1.24 (T_c)</th>
<th>1.65 (T_c)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\eta/s)</td>
<td>0.102(56)</td>
<td>0.134(33)</td>
<td></td>
</tr>
<tr>
<td>(\zeta/s)</td>
<td>0.73(3)</td>
<td>0.065(17)</td>
<td>0.008(7)</td>
</tr>
</tbody>
</table>

H. Meyer (2007)
Experiment (liquid helium)

Kapitza (1938)
viscosity vanishes below T_c
capillary flow viscometer

Hollis-Hallett (1955)
roton minimum, phonon rise
rotation viscometer

$$\frac{\eta}{s} \simeq 0.8 \frac{\hbar}{k_B}$$
Time scales

\(R_i \) [\(\mu m \)]

\(t_{\text{acc}} \), \(t_{\text{diss}} \), \(t_{\text{fr}} \), \(t_{\text{cross}} \)

\(R_\perp \)

\(R_z \)

\(t[ms] \)