From Trapped Atoms
To Liberated Quarks

Thomas Schaefer

North Carolina State University
BNL and RHIC
Heavy Ion Collision

Star TPC
Hydrodynamic expansion converts coordinate space anisotropy to momentum space anisotropy.

Source: U. Heinz (2005)
Elliptic Flow II

Requires “perfect” fluidity ($\eta/s < 0.1$?)

(s)QGP saturates (conjectured) universal bound $\eta/s = 1/(4\pi)$?
Designer Fluids

Atomic gas with two spin states: “↑” and “↓”

Feshbach resonance

\[a(B) = a_0 \left(1 + \frac{\Delta}{B - B_0} \right) \]

“Unitarity” limit \(a \to \infty \)

\[\sigma = \frac{4\pi}{k^2} \]
Elliptic Flow

Hydrodynamic expansion converts coordinate space anisotropy to momentum space anisotropy.
Perfect Liquids

sQGP \((T=180 \text{ MeV})\)

Trapped Atoms \((T=1 \text{ neV})\)

Neutron Matter \((T=1 \text{ MeV})\)
Universality

What do these systems have in common?
dilute: \(r \rho^{1/3} \ll 1 \)
strongly correlated: \(a \rho^{1/3} \gg 1 \)

Feshbach Resonance in \(^6\text{Li}\)

Neutron Matter
Questions

Equation of State

Critical Temperature

Transport: Shear Viscosity, ...

Stressed Pairing
I. Equation of State
Universal Equation of State

Consider limiting case ("Bertsch" problem)

\[(k_Fa) \to \infty \quad (k_Fr) \to 0\]

Universal equation of state

\[\frac{E}{A} = \xi \left(\frac{E}{A}\right)_0 = \xi \frac{3}{5} \left(\frac{k_F^2}{2M}\right)\]

How to find \(\xi\)?

- Numerical Simulations
- Experiments with trapped fermions
- Analytic Approaches
Effective Field Theory

Effective field theory for pointlike, non-relativistic neutrons

\[\mathcal{L}_{\text{eff}} = \psi^\dagger \left(i\partial_0 + \frac{\nabla^2}{2M} \right) \psi - \frac{C_0}{2} (\psi^\dagger \psi)^2 + \frac{C_2}{16} \left[(\psi \psi)^\dagger (\psi \nabla^2 \psi) + h.c. \right] + \ldots \]

\[(a, r, \ldots) \Rightarrow (C_0, C_2, \ldots) \]

Partition Function (Hubbard-Stratonovich field \(s \), Fermion matrix \(Q \))

\[Z = \int \mathcal{D}s \exp \left[-S' \right], \quad S' = -\log(\det(Q)) + V(s) \]

\[C_0 < 0 \text{ (attractive): } \det(Q) \geq 0 \]
Continuum Limit

Fix coupling constant at finite lattice spacing

\[
\frac{M}{4\pi a} = \frac{1}{C_0} + \frac{1}{2} \sum_{\vec{p}} \frac{1}{E_{\vec{p}}}
\]

Take lattice spacing \(b, b_\tau \) to zero

\[
\mu b_\tau \to 0 \quad n^{1/3} b \to 0 \quad n^{1/3} a = \text{const}
\]

Physical density fixed, lattice filling \(\to 0 \)

Consider universal (unitary) limit

\[
n^{1/3} a \to \infty
\]
Lattice Results

Canonical $T = 0$ calculation: $\xi = 0.25(3)$ (D. Lee)

Not extrapolated to zero lattice spacing
Pairing gap (Δ) = 0.9 E_{FG}

Odd N: $\xi = 0.4$ (Burovski et al., Bulgac et al.)

Even N: $E = 0.44 N E_{FG}$

Other lattice results: $\xi = 0.4$ (Burovski et al., Bulgac et al.)

Experiment: $\xi = 0.27^{+0.12}_{-0.09}$ [1], 0.51 ± 0.04 [2], 0.74 ± 0.07 [3]

Upper and lower critical dimension

Zero energy bound state for arbitrary d

$$\psi''(r) + \frac{d-1}{r}\psi'(r) = 0 \quad (r > r_0)$$

$d=2$: Arbitrarily weak attractive potential has a bound state

$$\xi(d=2) = 1$$

$d=4$: Bound state wave function

$$\psi \sim 1/r^{d-2}.$$ Pairs do not overlap

$$\xi(d=4) = 0$$

Conclude $\xi(d=3) \sim 1/2$?

Try expansion around $d = 4$ or $d = 2$?

Epsilon Expansion

EFT version: Compute scattering amplitude \((d = 4 - \epsilon)\)

\[
T = \frac{1}{\Gamma (1 - \frac{d}{2})} \left(\frac{m}{4\pi} \right)^{-d/2} \left(-p_0 + \frac{\epsilon p}{2} \right)^{1-d/2} \approx \frac{8\pi^2 \epsilon}{m^2} \frac{i}{p_0 + \frac{\epsilon p}{2} + i\delta}
\]

\[
g^2 \equiv \frac{8\pi^2 \epsilon}{m^2} \quad D(p_0, p) = \frac{i}{p_0 + \frac{\epsilon p}{2} + i\delta}
\]

Weakly interacting bosons and fermions
Epsilon Expansion

Effective potential

\[O(1) \quad O(1) \quad O(\epsilon) \]

\[\xi = \frac{1}{2} \epsilon^{3/2} + \frac{1}{16} \epsilon^{5/2} \ln \epsilon \\
- 0.0246 \epsilon^{5/2} + \ldots \]

\[\xi(\epsilon = 1) = 0.475 \]

Problem: Higher order corrections large (\(\sim 100\% \))!

Combine \(d = 4 - \epsilon \) and \(d = 2 + \bar{\epsilon} \) (and Pade)

\[\xi = (0.3 - 0.35) \]
Quark Gluon Plasma Equation of State (Lattice)

Compilation by F. Karsch (SciDAC)
Holographic Duals at Finite Temperature

Thermal (conformal) field theory \equiv AdS_5 black hole

CFT temperature \Leftrightarrow Hawking temperature of black hole

CFT entropy \Leftrightarrow Hawking-Bekenstein entropy $= \text{area of event horizon}$

$$s = \frac{\pi^2}{2} N_c^2 T^3 = \frac{3}{4} s_0$$

Gubser and Klebanov

Extended to transport properties by Policastro, Son and Starinets

$$\eta = \frac{\pi}{8} N_c^2 T^3$$
II. How Large Can T_c Get?
Critical Temperature: From BCS to BEC

BCS

BEC

\[
T_c^{BCS} = \frac{4 \cdot 2^{1/3} \epsilon^\gamma}{\epsilon^{7/3} \pi} \epsilon_F \exp \left(-\frac{\pi}{|k_F a|}\right)
\]

\[
T_c^{BEC} = 3.31 \left(\frac{n^{2/3}}{m}\right)
\]

\[
T_c(a \to \infty) = 0.28\epsilon_F
\]

\[
T_c = 0.21\epsilon_F + O(a_B n^{1/3})
\]
Lattice results: $T_c/T_F = 0.15$ (UMass)

Kinast et al. (2005)
Quark Matter: Color Superconductivity

Weak coupling result

\[\frac{T_c}{T_F} = \frac{b e^n}{\pi} \exp \left(-\frac{3\pi^2}{\sqrt{2g}} \right) \]

\[b = 512\pi^4 g^{-5} \left(2/N_f \right)^{5/2} e^{-\frac{\pi^2+4}{8}} \]

Maximum \(T_c/T_F = 0.025 \). Strong coupling?

Find \(T_c/T_F \approx 0.2 \)

Note: Transition to \(\chi SB \)
Consider \(N_c = 2 \) QCD?
Importance of T_c/T_F: Heavy Ion Collisions at Fair
III. Transport Properties
Collective Modes

Radial breathing mode

Ideal fluid hydrodynamics, equation of state $P \sim n^{5/3}$

\[
\frac{\partial n}{\partial t} + \vec{\nabla} \cdot (n\vec{v}) = 0
\]

\[
\frac{\partial \vec{v}}{\partial t} + (\vec{v} \cdot \vec{\nabla}) \vec{v} = -\frac{1}{mn} \vec{\nabla} (P + nV)
\]

$\omega = \sqrt{\frac{10}{3}} \omega_{\perp}$
Damping of Collective Excitations

\[T/T_F = (0.5, 0.33, 0.17) \]

\[\tau \omega: \text{decay time } \times \text{trap frequency} \]

Kinast et al. (2005)
Viscous Hydrodynamics

Energy dissipated due to viscous effects is

$$\dot{E} = -\frac{\eta}{2} \int d^3 x \left(\partial_i v_j + \partial_j v_i - \frac{2}{3} \delta_{ij} \partial_k v_k \right)^2 - \zeta \int d^3 x (\partial_i v_i)^2,$$

$$\eta, \zeta: \text{shear, bulk viscosity}$$

Shear viscosity to entropy ratio ($\zeta = 0$)

$$\frac{\eta}{s} \sim c_i \times \frac{\Gamma}{\omega_{\perp}} \times \frac{\mu}{\omega_{\perp}} \times \frac{N}{S}$$

c_i determined by Hydro solution

Bruun, Smith, Gelman et al.

Problems: Scaling with N; T dependence below T_c
IV. Stressed Pairing
Polarized Fermions: From BEC to BCS

Response of paired state to pair breaking stress (e.g. Zeeman field)

\[L_{\text{ext}} = \delta \mu \psi^\dagger \sigma_3 \psi \]

BEC limit: Tightly bound bosons, no polarization for \(\delta \mu < \Delta \)

\(\delta \mu > \Delta \): Mixture of Fermi and Bose liquid, no phase separation

BCS limit: No homogeneous mixed phase

\(\delta \mu > \delta \mu_{c1} \): LOFF pairing \(\Delta(x) = e^{iqx} \Delta \)
Inhomogeneous pairing

Onset? Consider EFT for gapless fermions interacting with GB’s

\[\mathcal{L} = \psi^\dagger \left(i \partial_0 - \epsilon(-i \vec{\partial}) - (\vec{\partial} \varphi) \cdot \frac{\vec{\partial}}{2m} \right) \psi + \frac{f_t^2}{2} \dot{\varphi}^2 - \frac{f^2}{2} (\vec{\partial} \varphi)^2 \]

Free energy of state with non-zero current \(v_s = \partial \varphi / m \)

\[F(v_s) = \frac{1}{2} n m v_s^2 \]

\[+ \int \frac{d^3 p}{(2\pi)^3} \epsilon_v(p) \Theta(-\epsilon_v(p)) \]

Unstable for BCS-type dispersion relation

\[x \sim \frac{J}{\Delta} \quad h \sim \frac{\delta \mu - \delta \mu_c}{\Delta} \]
Minimal Phase Diagram

\[\frac{\delta \mu}{\Delta} \]

\begin{align*}
\text{gapless superfluid} \\
\text{homogeneous superfluid} \\
\text{supercurrent} \\
\text{LOFF}
\end{align*}

\[\frac{1}{a} \quad \text{\(1/a^*\)} \quad \frac{1}{a} \]

\[\begin{array}{c}
\varepsilon(p) \\
\Delta \\
p
\end{array} \quad \begin{array}{c}
\varepsilon(p) \\
\Delta \\
p
\end{array} \quad \begin{array}{c}
\varepsilon(p) \\
\Delta \\
p
\end{array} \]

\[\begin{array}{c}
\Delta \\
\text{homog. superfluid} \\
\text{supercurrent state}
\end{array} \quad \begin{array}{c}
E_i \\
\text{homog. BCS}
\end{array} \quad \begin{array}{c}
E_i \\
gapless BCS \\
\text{LOFF}
\end{array} \]

Son & Stephanov (2005)
Experimental Situation

$\delta E_F = 0.36 E_F$

Zwierlein et al. (MIT group)
Color Superconductivity in QCD: Response to $m_s \neq 0$

QCD with three degenerate flavors: CFL pairing

$$\langle q_i^a q_j^b \rangle = (\delta_i^a \delta_j^b - \delta_j^a \delta_i^b) \phi$$

$$\langle ud \rangle = \langle us \rangle = \langle ds \rangle$$

Pair breaking stress due to $\mu_s = m_s^2/(2p_F) \neq 0$

kinematics + electric neutrality + weak equilibrium
Phase Structure of CFL Quark Matter

How does CFL ($\langle ud \rangle = \langle ds \rangle = \langle su \rangle$) pairing respond to m_s?

Excitation energy of fermions

Gapless modes appear at $\mu_s(\text{crit}) \sim 0.75\Delta$

Energy density of superfluid phases

$\mu_s(K - \text{cond}) \sim m_u^{2/3} \Delta^{4/3} / \mu$

$\mu_s(GB - \text{cur}) \sim 0.75\Delta$

Trapped atoms provide interesting model system

equation of state of strongly correlated systems (neutron matter, sQGP)

viscosity of strongly correlated systems (sQGP?)

superfluidity at strong coupling (T_c/T_F, response to pair breaking fields, precursor phenomena)