PY 203 Test #2

NAME_______________________

Wally is an electron. He has a mass of 9.11×10^{-31} kg and a charge of 1.602×10^{-19} C.

1) We begin our story with Wally trapped on the surface of a silver coin. What wavelength of light will set him free? [The work function of silver is 4.73 eV.]

2) Wally is hit by a photon with an energy equal to that of Wally’s rest energy. The photon is scattered by an angle of 110 degrees in Wally’s initial rest frame. [$\cos(110) = -0.342$]

 A. What is the wavelength of the photon before the collision in terms of the Compton wavelength of an electron, $\lambda_C = h/mc$?
 B. What is the wavelength of the scattered photon in terms of λ_C?
 C. What is Wally’s kinetic energy after the collision (in units of mc^2)?
 D. What is the magnitude of Wally’s momentum after the collision (in units of mc)?
 E. What is Wally’s de Broglie wavelength after the collision?

3) Wally is confined to move along a one-dimensional wire of length L. Assume he can only exist in states for which his de Broglie wavelength has a node at each end of the wire.

 A. Sketch the three longest possible wavelengths Wally can have in this wire.
 B. Derive an expression for possible wavelengths in terms of L and an integer, n, where $n=1$ is the longest wavelength, $n=2$ the next longest, etc.
 C. Derive the momentum for each of these states in terms of n, L and Planck’s constant.
 D. Assuming these states have sufficiently low energy that Wally remains non-relativistic, derive the energy in terms of n.
 E. If Wally transitions from the first excited state ($n=2$) to his ground state ($n=1$), how much energy must be emitted in the transition?
 F. What is the wavelength of a photon with this emitted energy?

4) Wally collides with his anti-self (a positron) and annihilates to produce two photons of equal energy. The electron and positron are moving toward each other with equal speeds of $v=0.2c$ just before the collision.

 A. Why must the photons have equal energy?
 B. What is the energy of each photon?
 C. What is the wavelength of each photon?