PHY 125, useful formulas

1. velocity and acceleration:

\[\ddot{v} = \frac{d\vec{r}}{dt}, \quad \ddot{a} = \frac{d\ddot{v}}{dt} \] \hspace{1cm} (1)

linear motion with constant acceleration

\[x = x_0 + v_0 t + \frac{1}{2} a t^2 \] \hspace{1cm} (2)
\[v = v_0 + a t \] \hspace{1cm} (3)

also: \(v^2 = v_0^2 + 2a(x - x_0) \)

2. Newton’s laws

\[\sum_i \vec{F}_i = 0 \Rightarrow \ddot{v} = \text{const} \] \hspace{1cm} (4)
\[\sum_i \vec{F}_i = m \ddot{a} \] \hspace{1cm} (5)
\[\vec{F}_{12} = -\vec{F}_{21} \] \hspace{1cm} (6)

3. static friction (\(N \) normal force)

\[F_s \leq \mu_s N \] \hspace{1cm} (7)

kinetic friction

\[F_k = \mu_k N \] \hspace{1cm} (8)

4. Newton’s law of gravity

\[\vec{F} = -\frac{GmM}{r^2} \hat{r} \] \hspace{1cm} (9)
5. centripetal acceleration

\[a_c = \frac{v^2}{r} \] \hspace{1cm} (10)

6. Work

\[W = \int \vec{F} \cdot d\vec{r} \] \hspace{1cm} (11)

constant force \(W = \vec{F} \cdot d \vec{r} \)

7. kinetic energy \(K = \frac{1}{2}mv^2 \). Energy conservation for conservative forces

\[K_1 + U_1 = K_2 + U_2, \] \hspace{1cm} (12)

where \(U = - \int \vec{F} \cdot d\vec{r} + \text{const} \) is the potential energy associated with the conservative force.

8. Hooke’s law (spring constant \(k \))

\[F_s = -kx \] \hspace{1cm} (13)

elastic potential energy \(E = \frac{1}{2}kx^2 \).

9. Gravitational potential energy

\[U(r) = -\frac{GmM}{r} \] \hspace{1cm} (14)

Approximate result near the surface of the earth: \(U = mgh \).

10. Power \(P = \frac{\Delta W}{\Delta t} \).

11. Linear momentum \(\vec{p} = m\vec{v} \). Newton’s equation of motion

\[\sum_i \vec{F}_i = \frac{d\vec{p}}{dt} \] \hspace{1cm} (15)

Momentum Conservation: \(\vec{P} = \sum_i \vec{p}_i \)

\[\frac{d\vec{P}}{dt} = \sum_i \vec{F}^\text{ext}_i. \] \hspace{1cm} (16)

Then: \(\vec{F}^\text{ext} = 0 \Rightarrow \vec{P} = \text{const.} \)
12. rotation around a fixed axis

\[\omega = \frac{d\theta}{dt}, \quad \alpha = \frac{d\omega}{dt}. \]

(17) constant angular acceleration

\[\theta = \theta_0 + \omega_0 t + \frac{1}{2} \alpha t^2. \]

(18)

13. A particle in a rigid body rotating with angular velocity \(\omega \) has tangential velocity given by

\[v = r\omega \]

(19)

The tangential and radial acceleration are

\[a_{\text{tan}} = r\alpha, \quad a_{\text{rad}} = \frac{v^2}{r} = \omega^2 r. \]

(20)

14. The moment of inertia of a rigid body about a given axis is defined by

\[I = \sum_i m_i r_i^2. \]

(21)

The angular momentum is

\[L = I \omega \]

(22)

and the rotational kinetic energy

\[K = \frac{1}{2} I \omega^2. \]

(23)

15. When a force \(\vec{F} \) acts on a body, the torque of that force with respect to a point \(O \) is given by

\[\tau = Fl \]

(24)

where \(l \) is the lever arm. A definition involving vectors is \(\vec{\tau} = \vec{r} \times \vec{F}. \) The angular acceleration is related to the torque by

\[\tau = I \alpha. \]

(25)
16. The angular momentum of a point particle is given by
\[\vec{L} = \vec{r} \times \vec{p} \]
(26)

In relation between torque and the change of angular momentum is
\[\vec{\tau} = \frac{d\vec{L}}{dt} . \]
(27)

17. Useful numbers
\[g = 9.81 \frac{m}{s^2} \]
(28)
\[G = 6.67 \cdot 10^{-11} \frac{Nm^2}{s^2} \]
(29)
\[M_E = 5.97 \cdot 10^{24} kg \]
(30)
\[r_E = 6.38 \cdot 10^6 m. \]
(31)

Simple math

1. Circle of radius \(r \)
\[A(\text{rea}) = \pi r^2, \quad C(\text{circumference}) = 2\pi r \]
(32)

2. two-dimensional vector \(\vec{A} = A_x \vec{i} + A_y \vec{j} \)
\[A = |\vec{A}| = \sqrt{A_x^2 + A_y^2} \]
(33)
\[A_x = A \cos(\theta) \]
(34)
\[A_y = A \sin(\theta) \]
(35)
\[\tan(\theta) = \frac{A_y}{A_x} \]
(36)

where \(\theta \) is the angle between \(\vec{A} \) and \(\vec{i} \).
3. scalar product: $\vec{A} = A_x\hat{i} + A_y\hat{j}$, $\vec{B} = B_x\hat{i} + B_y\hat{j}$

$$\vec{A} \cdot \vec{B} = AB \cos(\theta) = A_x B_x + A_y B_y.$$ \hfill (37)

4. quadratic equation $ax^2 + bx + c = 0$ has solutions

$$x_{1,2} = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}.$$ \hfill (38)

5. If $y = ax^n$ then

$$\frac{dy}{dx} = anx^{n-1}.$$ \hfill (39)