Homework 3, due 9-15

1. Consider the one-dimensional potential well

\[V(x) = \begin{cases} \infty & x < 0, x > a \\ 0 & 0 < x < a \end{cases} \]

discussed in class. Compute the expectation values of \(x, x^2, p, \dot{p}^2 \). Remember that \(\dot{p} = -i\hbar d/dx \).

2. The energy eigenstates of the one-dimensional potential well are

\[E_n = \frac{\hbar^2 \pi^2 n^2}{2ma}, \quad (n > 0). \]

What is the ground state energy of a 0.1 kg billiard plan which is confined between two walls 1m apart? What is the corresponding (classical) velocity? What is the quantum number \(n \) corresponding to the billiard ball moving at \(v = 0.1 \) m/s?